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BALLISTIC RESEARCH LABORATORIES

REPORT.NO. 1065

IDISchmid/dp
Aberdeen Proving Ground, Md.
July 1959

A GENBRAL ANALYTICAL SOLUTION TO THE
P50BI.EMOF PHGTOGRAMME!E+Y

Al?STRACT

An analytical treatment of the general problem of photogmmmetry is

developed which only requires that object point, center of projection and

corresponding image point are collinear for any one ray present in a specific

photogrammetric measuring procedure. The corresponding formulas, expressing

the geometrical relation existing between the spatial coordinates of the

object, the plate coordinates of the corresponding image and the elenientsof

orientation, are the bases for a rigorous least squares adjustment, whereby

both the image-coordinatesmeaaured on a comparator, and the given control

data may be considered as erroneous. The corresponding system of normal

equations, which is shown to be typical for any photogrammetricmeasuring

problemU-is used‘to form a system of reduced normal equations, the unknowns

OI?whfrir’are-either-’the‘elements’‘-oforientationor ‘thespatial coordinates of

the muftel.---The-zzpplice.tion‘ofmatrix calculusmot-only =tmpltfies the-preaen-

tatinn%ut-reduces ‘the%Ook&epin@ effort”,

spending program for electronic computers. A

problem of incorporating additional geometric

between any one or all of the unknowns of the

the described method for the special cases of

is treated, whereby attention is given to the

spending system of reduced normal equations.

while--efiablishfng-tk---

special chapter deals with the

conditions as they may exist

solution. The application of

“strip and block triangulation”

problem of solving the corre-

For an Uol.imite$strip, a

rigorous solution is presented, which is based on the stepwise elimination of

certain groups of the unkuownE. Finally,’an iterative solution is given which

m&es use of the relaxation method.
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I. INZRODIJCTION

Theoretical and practical work concerned with the development and testing+.
of analytical solutions for the reduction of photogrammetrlc records has, in

the past, proven the feasibility of such a method. Such a pro~ect was initi-
:,

ated at the Ea.11.isticResearch Laboratories,Aberdeen Proving Ground, Maryland

with the study of the orientation of a single camera followed.by a solution

for the problem of triangulation by a combination of two photogrs.mmetric

cameras. These two phases have been presented in the E$RLReports No. 8L% [1]*

and No. 961 [2]. The phase logicslly to follow is the development of sm

analytic@. solution for the n-camera case. The problem of triangulating, for

exsmple, the spare-time coordinates of points of trajectories recorded.simul-

taneously on more then two photogrmmnetric csmierasbelongs in this category, ,,

as well as the problems of strip and block triangulation.

In [zJ au approach was outlined which wutid have msde it possible to

extend the two cemera solution to the treatment of the n-camera problem. The

moat serious objection to that approach is the fact that, in such a case, the

matrix, associated with the vectors of the residud’s, loses more and more its

diagonal character. Thus, the basis for the feasibility of the corres~nding

numerical solution is being impaired. (Compare[2], page 22 and schematics
(

on page 48). Furthermore, the solution becomes cuuioersomeif additional

Information must be introduced expressing certain geometric conditions con-

cerned with the coordinates of the points of the object to be triangulated.

I.astbut not least, the “bookkeeping effort” in the preparation of the

electronic computation would have been considerable, due to the necessity of

distinguishingbetween,verlous kinds of control data and corresponding con-

ditional equations, which, to make things worse, are of somewhat different

character,‘dependingon the nuniberof cemeras involved in my one specific

triangulation.

The following solution overcomes these objections. As an additional

feature, this ‘solutionis based in its entirety on the simplest mathematical

presentation conceivable. The use of matrix calculus for setting up a system

of reduced normal equations is.especially suited for electronic computers.

* Reference at the end of the paper.
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The following presentation of the solution is complete with respect to

derivation of the necessary formulas, differential coefficienta and auxilia-

ries. However, with respect ‘togeneral remerks end basic principles, referring

to photogremetric as well as to statistical subjects, reference will occasion-

ally be made to [1] and b] which are considered to be available to the casual

reader.

11. THE GENERAL FROBLEM OF ANAIS’TICALFHOTOGMM@XRl

The general problem of analytical photogrsmmetrymay be defined as the

simultaneous.restitution of the orientations of any number of photogrfsmnetric

records emd the reconstruction of the object space by triangulating corresp-

onding rays. There must be no limitations as to the type and orientation of

my one camera, so long as the correspondingbundle of rays corresponds to

the principle of a central.perspective. No limitations must be made with re-

spect to the number, type and location of control data including absolute

given, partial given and relative pints, so long as the given information

satisfies at least the geometrical reqt+xm ents for.a unique solution.

In a general solution it must be possible to enforce any number of geo-

metric conditions concerned ~th any one or all orientation parameters, as well

as with any one or all coordinates of the points of the object space. Further-

more, it must be possible to consider both the plate measurements and the given

control data as erroneous, whereby the computation must allow the introduction

of individual weighting factors. Finally, a general solution must derive, from

the tre&ment of the redundant information, such expressionsof precision which

will give information about the mean error of sm observation of unit weight -

the mesa errors of the orientation elements as well as of the triangulated

coordinates.

III. THl CONDITION OF CO-LZNEARITYAS THE SOLE
CONDITION NECESSAHY TO SOLVE TH13FROBLIWI
OF ANALYTICAL FHOTO~Y

For later reference, a description’of a“few fumdas@al photogxammetric

operators seems appropriatee.

.-,
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A, The photogrenmetricbundle

By connecting any identifiable

point situated outside of the plane

and its orientation

detail on the photographic plate with a

of the photograph, it is possible to

construct a bundle of rays. (Fig. 1) The point, thus common to all rays, is

the 80 called center of projection, denoted by O. It is hardly ~ssible, and

for Our purposes ce:$~}n#y unnecessary, to interpret this point physically.

The position of this~relative to the photographic plate is fixed if, for

example, an arbitrarily oriented rectangular plate coordinate system (x and y)

is introduced in which the base of the perpendicular to the plane of the plate
..

through O, denoted by P (principalpoint), has the coordinates x and yp. The
P

length of this perpendicular, denoted by c, is a scale factor end most not be

physically interpreted. The sole purpose of this phase of the photogranmetric

evaluation technique is to provide means suited for an unambiguous construction

of a bundle of rays. This is accomplished by measuring x, y plate coordinates

of identifiable detail on the photograph in the same plate coordinate system,

in which the point P is being described by its parameters x and yp. The

p&emeters c, x and y
P

are commonly referred to as the elements of interior
P P

orientation.

After such a bundle is obtained, the problem is to orient it unembi~ously

in space, (1) by assigning to the point O, a specific spatial position ex-

presseal,for example, by three linear parqneters, X., Y. emd Z. with respect to

an arbitrarily established Cartesian spatial coordinate system; (2) by de.

fining with respect to the axes of this coordinate system, the direction of the

vector as formed by the extension of the line ~ into space by two rotational

components, (e.g., cland m rotations), and (3) by establishing the spatial

position of the plate coordinate’system ‘bya third rotation (swing emgle K )

around the vector described, snd positioned

The parameters Xo, Yo, Zo, a, u, K are

elements of exterior orientation.

according to (2).

commonly referred to as the

Both groups, the elements of interior and the elements of exterior

orientation, shsll from now on be considered Jointly if reference is msde

simply to the elements of orientation. The notation O -isused if SJ1

7
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orientation elements sre being considered present in a specific photogrsnmu?tric

measuring system, while the notation oi is used if only a group associated

with a certain camera station I is being regarded.

B. The control data end the associated residuals.

It is common practice to refer to points lmown with their absolute P-

sition as absolute control points, to points known with either one or two

positioning parameters as partial control points, aud to points not known at

all @th respect to their absolute position, as relative control @.nts. Be-

cause all these points belong to the object photographed, it is conceivable to

refer to them in their totality simply as control points, smd denote their

spcutial.psitions by X , while the spatial.location of any one individual

mint J shall be denoted by )(j . In case the given control Mint coordinates

are not flawless, it will become necessary in a general solution to treat these

parsareterslike measurements and allow for corresponding corrections in the

least squsres solution. The designation V refers to the corrections of all

control data and corres~ndingly Vj is being used if onlY a sFecific contrOl

p6int “J” is considered.

c. The plate measurements .emdthe associated residuals.

As described in (A), any individual ray within a photogrsmmetricbundle

is unambiguously positioned by two plate measurements x and y. In snalogue to

the above not’ation,we shall denote all plate coordinates involved in a spe-

cific photogre.metricmeasuring system by x and the plate coordinates of a

specific image point,.on a specific Plate by Xij. Corres&mndingly,we denote

the total number of plate measurements smd their residuals.by Q and v

respectively, and the plate measurements smd their residuals associated with

a specific point, on a specific photograph bY ~ij S.IId Vij .

The object space (the model) can be visualized as the integrated effect

‘producedby the intersections of corresponding rays, ,eachof which is po-

sitioned in a specific oriented

corresponding image location as

photogrammetricbundle

stored on ‘thespecific

9“

according to the

photographic record.
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With the notation introduced above we may consequently write:

x =+ (0,%) (1)

Formula (1) expresses the general problem of photogrsmmetry, indicating a

functional relation between the model )( , the plate coordinates X and

the orientation parameters O . Introducing the plate measurements, their

residuals and the residuals of the given control data, we obtain, with respect

to (l), a system of observationalequations of the form:

(2)

The roots of the corresponding normal equation system represent the numerical

aolution of the general photogrammetric problem. The result, aa expressed by

formula (1), has been explained as an integrated effect of the contribution

of all the individual rays. Because no one ray distinguishes itself basically

from any other ray, this interpretation suggests that for an individual ray,

a corresponding functional relation.exists which is obtained by simply

indexing the corresponding parameters, thus, leading, according to formul.a

(2), to the corresponding observational.equations:

‘(vij, vj) = F(Oij Xj3Yi]) (3)

To comprehend this result we recollect that the bundle of rays of an idealized

physical photogramnetric camera has its geometrical representation’in the

concept of the central perspective. Any photogrammetricbundle can thus be

considered as a population, the members of which are the individual rays. Any

algebraic expression representing a single ray of such a bundle, may thus be

envisaged 8s representing, collectively, the bundle in Its entirety, by sImply

omitting the index denoting the specific ray.

&cause any one photogrammetricbundle is based on the concept of the

central perspective, and any one photogrsmmetric problem may be considered as

a combination of any number of such bundles, it follows that an equation

representing the geometrical properties of an individual ray can be considered

as adequate to express, collectively, the problem of analytical photogrammetry.

10



Consequently,‘it must be ‘possibleto develop an analytical solution for the

most general problem of photogrammetry,based solely on formulas which express

the geometrical properties of an individual ray belonging to a bundle of rays,

formed according to the concept of the central perspective.

The corresponding relation is the condition that the center of ‘projection

O, the image point r and the object point R are collinear. (Fig. 2)

From Figure 2 we obtain:

z. I.L.T, where p ia a scale factor (4)

The projection of the vectors ~ and ~ respectively into the three coordinate

planes gives the component equations:

X=xo+llu

Y.= Yo+llv (5)

Z.zo+l.lw

The triplet of formulas~(>) is the analytical expression for the condition

that the points O, r and R lie on a straight line,

By eliminating the scale factor v in formulas (5) we obtain:

where (X) = X - X
0

(x) = (z) :

(Y) = (z) :
.

(Y)= Y-YO

(Z)=z-zo

From Fig. 2 we read directly:

~=iu+jv+kw =?%+ $~+~c

(6)

(7)

11
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whereby the trwsf ormation matrix of the two vector triplets is:m) (8)

Denoting, for exqmple, the two rotational angles between the two vector

triplets qccordlng to Figure 2 with a mad w, we obtain:

u=~cosa-~sin asin o+c”sinacoeu

v=ycosm+cs ino (9)

w..zsina-~cosa sinco+ccoeacosm.

From Figure 3 we obtain:
2

x = -(x - Xp) COS K - (Y - Yp) s~n.K (lo)

;= -(x- Xp) Sin K +( Y- yp) cos K

where x and y are the plate coordinates of an image point in an arbitrwily

orie&d rectangul.= reference system (plate coordinate system).

Substituting (10) into (9) and using (6) we have:

(z) [(x-x )Al + (Y-YP)A2 + C D]
x= +x

Q
o

(z):[(X-Xp)Bl + (Y-YP)B2 +c E]
Y= + Y.

Q

with Q = (X-X )C + (y-y )C + C F
pl p2

emd

,

~.=,
,C;[(X)*l + (i)Bl+(z)cl]

+x
q P

..c”[(x)%+ (Y)B2 + (@c2],,’ ‘“
y. +y

q P

with q = (X) D + (Y) E + (z) F’

13
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where we have denoted as essentially direction cosines:

Al = ,-COEa COS K + Sin a Sin W Sin K

B1 = -cOS 0,Sin K

C1=s.l.n acOs K+cosa ain main K

~=-c08a 6ti K-sin aeinucoBK (13)

B2 = CO13 (1) cOS K

C2 = SiIl ClfliDK -COS Cl 13iK4(1) COS K

D=sinacosm

F = COS.U C0,901

Each of the pair of formulas (11) and (12) represent the algebraic

expression for the geometrical condition of co-linearity of the points O, r

and R, solved explicitly for the coordinates of point R in the i, j, k system

and of point r in the ?, $, % system, respectively. The symmetrical arrangement

of the formulas is a direct consequence,of the reversibility of any central

perspective. (compare.[1] page 8)

In [2 ~ the algebraic solution was continued by eliminating such’Xi, Yi

and Zi3s from the solution which were not given as control data. This step led,

for relative control points, to an algebraic expression for the condition of

intersection,and correspondinglyfor partisJJ.ygiven control points, to the

condition of intersection at either one or two given control coordinates. As a

direct consequence of that approach, different types of conditional equations

were obtained for the different types of control points. To complicate the

situation further, the number of any particulem set of euch conditional equations

depends on the number of camera stations involved in any specific trl.mgul.ation

problem.



we most serious objection)against the approach chosen in [21 results

from the fact that, for the condition of intersection, it is necessary to have.,
at least four, and under certain conditions even six plate coordinate measure.

menta together with their residuals in any single conditionalequation.

Furthermore, in the case of multi-csmera t&u@l.atioq, the same residuals. ,.

appew in more t.haaone conditional equation} making a rigorous least sque.re’a

treatment laborious, or in more complex cases, even impractical.

The coordinates of the relative and partial control points not given at

the .outaetof the computations become known in the solution, as presented in

[23 , only implicitly as functions of the adjusted”pkte measurements sad

the orientation elements. The introduction of any additional geometric con-

ditions as they may exist for!any one or all of these coordinates requires

ccmplex mathematical manipulations, prohibitive from the standpoint of cnm-

puting economy. .,

Theme difficulties have been avoided in the present solution by including

the.el.iminatlonof the unknown coordinates of the model in the process of the

numerical treatment. k other wards, instead of eliminating algebraically the

unknown Xi, Yi and Zi$s, beforehs.nd,in the system of formulas (12), these

quantities are carried as wmltnownstogether with the orientation elements and

are solved for during the numerical solution.

All of the beneficial consequences of this approach will become evident

in the least squares solution as described in the next chap~r. 1$,suffices

to mention here the most importemt features:
,.,

(1) Each point, without regard .taits chsracter as‘absolute,”p6rtial or

relative control point is being treated alike, thus giving rise to two !

qquatioti,of the form of formul@s (12); for each csmera fitationat which the

point was recorded. Any given information for exs@ple, in the form of spatial

coordixtes, is introduced .bysimply eliminating the correspending parameter

corrections from the sequence of unknowns in the least squares solution.

Therefore, all points are treated with only one basic set of equations,

(formulas (1.2)), which are explicit in terms of’the measured plate,coordinates

x and y, respectively. ..

16



(2) The fact that the coordinates of the points of the model, to be

trien~ated are carried as unknowns in the solution, makes it possible to

introduce readily any additionalexisting geometric conditions for amy one

or all of these coordinates.

Iv. THE LEAST SQUARZS SOLUTION

The formulas (12) express the plate coordinates x and “yas functions of

the orientation elements and the spatial coordinates of the corresponding

object point. For any one point J photographedat a certain camera station

we may therefore write in general terms, according to formula (3):

I,

L“ +V
‘M %

= F1 [(ad, K ,~o,~o,~o,C,Xp)i, (X +Vx, Y + Vy, z + %),]
. .

(14)
1 2 [(+V .=F

‘IJ ,,Yij
Cwo, ~ ,xo,Yo,zo,c,Yp)i,(x + Vx, y + Vy, z + Vz)j]

,“.

Trom the Taylor expansion for the right head side of the equations (14),

~@ect~g ~~ of second ad ~@er order, we obtain the observational

equations:

where



The ~ are the normalized V-residuals according to”the formula:

(16)

%
and y;’ are computed with form~ (12) and the approximationvalues of

the unknowns which are denoted by 0 . It i6 obvious that in any one speiiiic

set of observational equations may appear either certain coordinate corrections

AX cm-the corresponding residual errors V depending OQ the c~acter of

the object point under consideration. With the introduction of we ;-resiclu@la,

according to formula (16)~ each ray has been assignetia specific goup of such

residusls. Such am approach is desirable from the numerical standpoint;be-

cause any correlation is avoided between the coefficients of’the matrix

associated with the residwls of the various rays, intersecting at a specific

point. From the theoretical standpoint such a solution seems to be advantageous

b%itie the individtuij.bundles of rays will conform to the P.@tern of the con-

trol data without undue restraint. In paragraph (D) of this chapter the possi-

bility will be discussed .ofarranging the lea~t squares adju@.ment in such a

way that for eqch given control coordinate only one specific residual V.is

obtained, independent of the number of rays intersecting at the point’under

consideration.

The relation between the approximation values and the final values of the

unknowne is given by:

cx=ci0+Ar2 C=c O+Ac

u=mO+Aw
ox,=x +Ax

PP P

K= KO+AK yp=y~+Ay
P

(17)
Xo= X: + A X.

‘S= X:+ AXJ.

Yo= Y: ‘+A Y.
‘J= ‘: ‘:A ‘J

Zo= Z: + A“20
‘J= ‘; + A ‘J

18



A. A Direct Solution ;

Using matrix notation, the system of observational equations for an m-ray

solution, according to formulas (3) or (15)~ may be written as:

A,

&z

‘A3

●

8

An

VI

v*

V3

●

●

v“

rAI

At

A3

●

●

h-m

-, (18)

The A i are the coefficient matrices of the corresponding residual vectors

Vi . In case the absolutely given control dati~are corx?i$eredflawlesq

Al= A2=A3=***=Am=I

the unit matrix. The B I are the coeffici.eiitmatrices of the vectors of the

corresponding parameter corrections ~ 1 . The A ~ are the vectors of the

absolute terms of the observational equati.cxp, We may rewrite the system of

observational equations with obvious notatioo as A v = 6~-~ (19)

with the weights P ,,

Asswming the observations to be indepemient and normally distributed the most

probable values of the unk.uomrnsare obtained by minimizing VT P V , where

P denotes the weight matrix

P=

P,
Pt

P~ ,
(20)

* Pm

19



,.
. .

An individual p i matrix designates the weights of the plate measurements and

of the control data, as they pertain to a .specific ray. The introduction of

weighting factors for the plate measurements may become necessary to express

varying degrees of precision associated with the original observations. Such

variations may arise from the method of measyring, the varying image quqlity

caused by loss of definition towards the edges of the photograph, or from a

decrease of accuracy with which the distortion correction is known for image

points at increasing radial distsnces from tliecenter of the plate. V=ious

degrees of dependability of the given control data can be considered, as well,

by the introduction of corresponding weighting factors. Infinitely large

weight with respect to the given control data will eliminate the V from the

solution, thus distributing the unavoidable discrepsacies .mnongthe plate co-

ordinate measurements only;.however, infinitely large weight assigned to the

plate coordinate meastiements will make the given control data absorb ell the

discrepancies present in connection with a certain ray umder consideration.[ 3;

While:the boundary conditions that were just mentioned are only of secondary

importance, the choice of suitable weighting coefficients -es it possible ; ,

to prevent an undue deformation of the model obtained photogrsmmetrical.lyby

possible strain in the configuration of the given control data. In case the

original observations (image poiritor control coordinates) are not independent

from each other, the corresponding correlations can be allowed for by intro-

ducing the corresponding correlation coefficients into the P matrix. In

case all the p-+iil.uesare equal.,it is convenient to consider P as the umit

matrik.

In setting up the corresponding normal equations, one has to txe into

account the fact that in the most general case each observational equation

contains more thqn one measurement. Furthermore, in such a,case, certain

mea&rements tid their residuals appear in more than one observational

equation. Helmert in [43 , (PP 215-222), has shown a direct solution of the

general problem of a least squares adjustment. (Compwe [2 ~ , paragraph IV).

Accordingly, we obtain in our case a set of normal.equations as shown in

fOrmlil.as(21):

(=) ,



TEC}if:ic:f.~j1,13T;J~~

BRJ.P!c!.?):.,~,,

where k denotes a vector of unknown Lagrange multipliers or correlates. A

direct solution would be obtained by the inversion of the system (21). That

is, however, hardly practical because in addition to the unknown parsmeter

corrections, AtB, we have for an m-ray problem 2m additional unlmown k-values,

a fact which increasefithe number of onknown parameters beyond the means of

practical computations.

Next, a method which is commonly used in partitioning, a system of linesr

equations shell be presented!which will be useful for our problem. Assuming a

system of linear equations:
,

Ax=Q
(22)

or consequently

(23)

Such a system can be partitioned in any arbitrary manner leading to the followi-

ng sub-matrices and sub-vectors:

%--t+%=

According to (23) we may write with the notation ofi(24)

xl = A-l’ Al Al= fl-A12 x2

and therefore

xl = A;’ ~l-A:l A12 X2

Introducing (26) into the lower pmtion of the system

A21A~1!)I+2114;’ A12X2 ‘A2X2

(A2-A21 A;i A12 ) x2 = Q2-A21A7’

(24)

(25), ,’

“(26)

(24) we obtain:

= iz (27)

(11
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I

which may be written ‘ina form analogous to (23) .as:

X2 = A;-i’ A2 : with A; = AZ -Azl ii; A12 (28)

Ap =.12 -A21Ay Jl

The’computation of’ Xl is then carried &t with formule (26).

Becauae the sequence of the steps in the process of partitioning is in

no way restricted, it is possible to write as in (28) md .(26)

x, = A:-’ Al with A; = Al -Alz A; A21 (29)

(30)

The method $uat described obviously eliminates one of the two groups of

unknowns as chosen by thei~rocess of partitioning and solves for the other

group, If the ‘methodia ueed to partition a system of normal equations at

w Point ~one its dl?gOn~, it fo~ows from the symmetry of’such a system

that & s A21 . Further, it can be shown that in such a case the

nmtrix A; in (28) and correspondinglythe matrix AT in (29) are again

“) symmetricallyarranged square matrices.

Eecause the matrix A P-’/lT in foimula (21) ‘isnon-singular in

ow problem, we may apply the method of ptititlonlng as just described for the

purpose of eliminating the k-values from the original nom@ equation system.

The reduced normal equation system is, according to foknnil.a(27),

[~T (AP-’AT )-’ B]~ = ~l(Ap-lAT)-l ~

\

(31)
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The feasibility of this method of pe.rtitioningdepends on the effort necessary

to invert the matrti. A P - ‘AT. Because this matrix ifieven for the ~st

general case of our problem, a sequence of fully separated symmetrically

arrmged (2 x 2) square sub-matrices, it is possible to accumulate the normal

equation system (31) stepwise, as explained in [2] page 22. Thus we obtain:

i~l [ BT ( AP-’ AT )-’ B]i A=~l [BT(AP-IAT)-I g ]i (32)

whereby m,,the number of AP-I AT submatrices, equals the numler of rays

present in the specific problem. As already mentioned at the beginning of this

paragraph, io case only the residuals of the plate mess~aents are present the

A i matrices are unit matrices snd therefore the (AP-l AT)- 1 term in (31)

reduces to P . In such a case the system (31) resembles a system of normal.

equations associated with observations.1equations for independent indirect

q.easurements. The final normal equation system in such a case can be accumu-

lated stepwise according to formula (32) by considering in each computational

step a single observational equstion.

AFter the vector of the A corrections of the unknown Pemwaetere is

computed, we obtain with the first group of equations in formula (21), the

k-vcd.ues.

‘ ~, (AP-IAT)-l(BA-!)

and the residual? v ml t’ by:

[Vxl

uv= ::‘P-l ATk
w
Vz

The V-values are then computed with formulas (16).

(33)

(34)
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From a study of formula (31) it becomes evident that the

the proposed solution depends on the possibility of inverting

large matrix of normal equations. In special applications of

feasibility of

a more or less

photogrcumsetry,

such as laboratory measurements, ballistic measurements, terrestrial.appli-

cations and, more recently, cadastral surveying, using airborne photography,

the single model still plays a dominant role. The total.number of unknowns

in such cases may very well.be within the limits which today can be reduced

by inverting the corresponding normal equation matrix. However, depending on

the number of relative control points considered essential in order to satisfy

the requirement for reduudant information and on the type of the electronic

computer available, there will arise in many photogrammetric applications the

problem of treating numbers of unknown parameters exceeding the computational

capacity for reduction by direct inversion. For such cases, it is desirable,

however, to maintain the advantages of the systematism and simplicity described

earlier in forming the observationalequations and the corresponding normal

equations. Consequently, the solution to our problem must concern itself with

mathods for determining the roots of a normal equation system of the type shown

in formula (31).

B. A Solution by Partitioning

In order to further reduce the number of unknowns in the normal equation.

system obtained in formula (31], we split the B matrix and the A vector in

such a way that one group is associated with the .mod.eland the other group with

the camera orientations. We denote the correspending submatrices and subvectors

by 6X t 60. S.nd Ax ~d A. , rewctiveW. with these notiti- weCm
present the system of normal equations (31) as follows:

[B: (AP-’AT)-’ BX]AX ~+[B~ (AP-’ AT)-’ BO]AO = B; (AP-’ATr’.Q (~s)
.... ... ....... . .. .. ....... ... . ... . ............. . . ... . ..... .... . ... ......>
[6: (Ap-’AT)-’6X]AX ~+[6~ (Ap-’AT )-’ Bc)]Ao = B: (Ap-’AT)-’~
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The normal equation system as shown in (35) is typical in its arrangement for

SJIYphotogr-e tric triangulation problem. The number of points recorded at

any one station and the number of stations involved in a specific measuring

progrsm will obviously influence the overall size of this matrix system but

will.not change its basic character. A study of the corresponding matrix

(see Fig. 4) ,showsthat we have along the diagonal, a sequence of fully

separated symmetrically arranged squere submatrices. The fact that the two

types of submatrices which appear vary in size is less significant then the

fact that in each submatrix of the first group, B~ ( AP-’ AT )-’ Bx , the

spatial coordinates of only one specific object point (in a general case up to

3) are present, while in each submatrix of the second group B: ( AP-’AT )-’ ~,
only the orientation elements of ‘onespecific caner. station (in a general case

up to 9), appear. The B~ (AP-’AT)-’ BO ~d the B: (AP-’AT f’ Bx
submatrices express the fact that a specific point was photographed from certain

cs.merastations,

Viewing our system of normal equations with respect to the method of

partitioning as described in this report with formulas (22) through (30), a

euitable point for partitioning is obviously that point on the diagonal, which

se~ates the parameters associated with the model, from the parameters con-

nected with the camera orientations, as indicated by the dotted lines in

formtd.s(35). According to formula (27), we may write:

{B: (AP-’AT)-’ BO-[B~(AP-’AT)-’ Bx][B~(AiAT)T)-’ BXj’[B~(AP-’tTT’ ~]}& =

{ B: (AP-’ATJ’ - [~ (AP-IPT’ BJIBj(AP-’WBx]-l [B~(AP-’AT)_’]}I ’36)

or, with reference to (32):

(37)
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where

Coi = BJ {(AP
[

-lAT)-l- (Ap-l Ar)-16x ][ B: ( AP-l AT )-’Bx]-’ [B~(AP-lA@]}i

snd r = number of points of the model.

In any photogrammetric reduction problem we may choose to eliminate either the

coordinate corrections of the model or the.corrections of the orientation

parameters in the system of equations (31). Accordingly, we may write as in

formula (37)

i~(CxBx)iAx=i}l (Cx Q )i (38)

where:

Cxi =B~{(AP-lAT)-’- [(AP-IAT)-IBo][B~ (AP-lAT)-iBo]-’[B$(AP-lAT)-l]}i

and n = number of photogrammetric cameras.

In photogramnetricmeasuring problems, generally speaking, the number of

unknown orientation parameters will be less than the number of unlmown coordi-

nates of the model; therefore the elimination of Ax as suggested with

formulas (37) will generally lead to the most economical solution. Block

trismgulation with a high degree of sidelap may be mentioned as an exception.

With the vector A ~ known, the vector A ~ may be cOmputed fOr each

point separately, or vice-versa, from the upper portion of formulas (35).

T%us for example Ax is:

Ax= [B/ (AP-IAT)-I Bx]-’ [B~(AP-IAT)-1] ( !I-BOAO) (39)
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[1‘ith A = 2: the k emd the correspondingv and V values may be computed

with formdas (33), (34) and (16).

However, it appe+.rsto be more advisable to compute the coordinates of

model pints with such computational steps, as outlined in Chapter IV, E. of

this report. Such an approach appesrs to be especially suited because the

corres~nding computational means must be included in the solution smyway, in

order to provide the first approximationvalues for the coordinates of the

model, which are necessary for starting the initial iteration cycle.

The setting up of the observational equations (15) or (19) requires

computing the coefficients of the matrix of the unknown parameter corrections

and of the residuals. All coefficients are obtained by partial different.

ation of the formulas (1.2). The linearization procedure is accomplished by

aPPl@ng the TaylOr series and neglecting second and higher order terms.

Therefore, an iterative procedure must be provided in the computation,whereby,

the results of each cycle are introduced as approximate values to the follow-

ing cycle. The iteration is repeated until the solution has converged to a

pre-established.accuracy level.

We now introduce the following computational auxiliaries:

@ ‘ ‘0:,x;
YO - YO@’ ---+

c

(40)
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aF2 ~

-~~=bx ,=@=@-’2

a“’’=%,=0=0-’2-Zqc (40)

hF2 ~
-T-=bz

,= @=@ ’-”

@=@’@’2

The coefficienta of the observational equations (U) are now:

~= Ax=-cO(@ .@+@)

~F2
~. ’y=..o (@.@-@)

aF1
~= ’x.=+cO

[(’+02) ‘in ‘O-@@cO’ “01 (41)

aF
~= By=-cO ~l+@2)cos KO-@.@,,in K“fl

aF1”
~=cx =-co@
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i3F2

~ = ~y = does not exist

aF1
~p = Ix = does not exist ~flj,d

(13 ) and the approximation vslues

It should be mentioned that~

E, F terms are computed with formulas (I2),

of the unknown parameters. ,,

for special case6 where the orientations of

the various csmera axes are such that the approximation values for the ro-

tational.parameters can be assumed in all iteration c“yclesto be either Oj

~ or multiples there-of~ the differe~tia.1quotients as given in (41) reduce

to well known simple expressions. However, this fact is hardly worth con-

sidering for a general solution because the savings in computing time are

kteria.1 if high speed electronic computers are used.

Small end medium sized electronic computers will handle with this method,

photogl~etric measuring systems of two aud thee cemera stations with an

unlimited nomber of recorded points. Large computers are adequate to solve

the corresponding problem for five aud six camera stations. In other words,

the suggested method seems feasible to provide a practical analytical solution

for photogream@ric measuring problems encountered in terrestrial.,laboratory

cadastral aud ballistic applications. The problems of strip and block tri-

~@tiOn which need to be studied further are considered in a later chapter.

O/, On the Use of Celestial Control Points:

The use of celestial targets (mostly ftied stem) is a traditional means

in geodesy smd photogmmmetry for establishing absolute orientati,oqof certain

bundles of rays with respect to earth ftied coordinate systems; Terrestrial

Photogrammetry has used this method, especially for non-topographical appli-

CEttiOIM. This technique has lately become of interest again-in co~ection
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with tracking of guided missiles smd satellites. k addition, star photography

must be considered an excellent means of cslibti,atingprecision photogrammetric
.

csm.eras,because the method not only allows the determination of angular

parameters, but the dete&ination of &e elements of interior orientation,

including distortion coefficientsj & well. (See chapter VI of this report).

Whatever the purpose, th6 &thcd relies simply on the fact that each

celestial target point, known by its spherical coordinates, right ascension

(a) and declination (5), provides sm absolute control point situated at

infinity. ThuE, a direction in space is ftied which is not sensitive to

chSn6SS in the position of the center of projection. Provided that the tits

and time of exposure, together with the geodetic ellipsoidal coordinates of

the center of projection (# wd k ) ere known, such a direction can be expressed’

with well-known formulas by a set of azimuth smclelevation angles, or as more

often used, by so cfdled standard coordinates ~ sad q, which are referred to a

~ent p~e on the unit sphere, described,around tie center of projection.

With prorer orientation, the ~ and q coordinates in the notation of this re-

port, qre equal to (X), (Y) with (Z) = 21. (Compcme formulas (12))

The corresponding observational.equations ws formed exactly like those

for absolute control points, with the exception that each of the pertial

Wferential coefficients associated with the A Xo, A yo, A z. P?retir

correctionsb&mmes zero, because of the celestial target polnte being at

infinity.

Ittis-prwttcal h incorporate WE influen=cri- astrounrnictzlrefraction,

(see chapter VII of this report) in the computation of the standard coordi-

nates, so that for the’corrected rays no further attention need be paid to the

refraction problem during the triangulation computations.

Obviously, the sun also is such a ,celestialtarget EUIdconsequently, the

aforementioned facts concerning the data reduction apply to it as well. TIE

use of the sun in acrid. photogrqnmetry is important for strip and block

triangulation, and appears tm be m.emdatoryfor satellite photogmmmetry, aa

well .asfor special.attitude determinationsof airborne photogmmmetric

cameras. Tne significance of celestisJ targets is not restricted to the f@



that a direction is available which is not a.ffected by accumulated errors.

At least equally importsmtis the fact that because of the infinity position

of celestial targets, the solution is able to discriminate between rotational

and translational parameters. If only terrestrial control points are used

these parameters are closely correlated. (Compare[5] ).

Generally spesking, we can say that each recorded sun image gives rise to

two obse~ational equations in term? of the three rotational parameters (et,m,

K ) of the corresponding station. Obviously, it is necessary that the

meacured sun image plate coordinates, recorded with a special sun camera, be

normalized in such a way that they are compatible with the metric character-

istics of the aerial camera taking the corresponding grocmd photography.

MathematicsUy speaking,,itis necessary to normalize the corresponding

comparator measurements, by transforming the x,y,c system of the sun,camera,

with three rotations end three translations, so that it conforms with the x,y,

c system of the aerial camera. The corresponding rotational and translational

pamnaeters are obtained from preceding camera calibrations, for example by

taking star photography.

D. Tsking into ConsiderationAdditio@ Geometric Conditions

In order to complete a generally acceptable analytical solution it is now

necess~ to study the probl?m“of incorporating certain geometric conditions

such as may exist for one or all of the unknown parecmeters,including both the

coordinates of the model and the orientation elements.

In the above outlined solution,.a system of normal equetions exists,

least temporarily, in terms of both the elements of orientation and the

coordinates of the model. The incorporation of any additional conditions

existing for any one or all of these unknowm parameters, can be performed

a computationaltechnique which was presented by Helmert in [k] dealing in

Chapter IV, paragraph 24 on page 196ff with the problem of indirect measure-

ments, the unlmown parameters of which have to satisfy certain conditional

equations.

at

by
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Helmert shows in his direct solut.ionjwhich seems suited for our problem,

that it is only necesssry to add to the normal equation system the corre-

spending conditional equations and to restore the quadratic form of the equation

system by introducing fioreach added conditional equation an @own “auxiliqry.

Assuming the observational equations

‘1
=alx+bly+clz-l

1

V2
=a2x+b2y+c2z -.4

2

=ax+by+c z-1
‘33333

v4=a4X+bhY+chZ-1 4

and the conditional equations

o.po+p1x+p2y

o.qo+q1x+q3z

We obtain from (42) the correspondingnormal equations:

[aa~ x + Iab] y + [at] .- [al] = o

[ah] x + [bb] Y + [be] z - [bl] = o (44)

(42)

..;

(43)

[at] x + [cb] y + [cc] z - ~c~ = o

This system is being enlarged by ad@g the conditional equations (43), into

the followingTerm:

[ad x+ [a@ y+ ra~ z+~1k1+q1k2 - [a~ .0

~~ x+ [b~ y+ ~~ z“+p2k1 . - ~~ =0

~~ X+ [Cd y+ [Cd Z+ . +q3k2. ~~ =0 (45

plx + P2Y . . 0 + P. =0

qlx . + ~3z +q =0
0

The presence of zeros in some of the diagonal terms must be taken into

consideration when the system (45) is being inverted.
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All the possible conditional equations which may exist between the

uuknown parameters of ow problem mu be divided into two types. IO,the first

group, all conditions shall be considered which introduce addition~ metric

itiormation, as for example, the height of a point above a certain refere:ce

sUfWe, or the pmtid position of a point expressed by latitude @ ~d ,.,
,..

longitude L or the sliiptdistance between’two relative control points of the

model or the differences in flying height between two successive aerial

photographs, etc. This type of conditioniilequation which shall be designated

as a metric condition is especially important for the wide field of photo-

gr-tric applications using ground control points,

The use of photogre.mmetricmeasuring systems for the de~ehination .of

trajectories of missiles and the anticipated use of these methods to measure

precisely the trajectories of satellites, e.g. for obtaining geodetic basic

information, requires the introduction of a second type of conditional equation,

where the additional information is not metric in an absolute sense but re-

strict.edto the mathematical character of the trajectory. This type of

conditional equation shall be designated as trend ,:,condition.

(a) Metric Conditional Equations

The mathematical form of a specific metric condition@ equation is

influenced by the type of metric information given, and by the reference

coordinate system introduced for the solution of the specific photogremnetric

measuring problem. From the multitude of possible given metric information,

the following selection can be assumed to be of special interest for terrestri-

al control points.

absolute points given by: Lstitude (~), longitude (L) and elevation

(H) with respect to an ellipsoid of revo-

lution, the axes of which are denoted by

a and b

ps@ial points given by: either latitude (@) and longitude (k), or

by elevation (H)

relative points given by: the slant distance between two relative

control points ,
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For computational convenience (see Chapter VII), it is assumed that a local

Cextesian system denoted by XYZ is oriented in such a way, that its XY plane

is tangent to the reference ellipsoid at the point of local origin, and its

+X axis is pointing to the south.

The corresponding metric

(1) An absolute control

conditional e~uations are for:

mint given by ~, k, H: X = Fl

Y=F2

Z.FX
.

we system (46) gives the results of a coordinate transformation presented in

[7]. NO sPecial metric conditional equations become necessary.

(2) A partial control point, given by @ and k:

(1) I~X + II@Y + III@Z = A@

(2) IAX + II~Y + IIIkZ = \

and correspmdingly, if the approximateion values XO YO ZO satisfy the above

conditional equations:

(1)

(2)

where, in

I@ + If# + II$& = O

IX& + IIAAY + IIIkAZ = O

fO~libS (47) sad (48):

1$. +1

I ~ . tsa A* sin [@]

II A=-l

III ~ = tan L* COB [~]

A
“h

= - [x] tsn L*

(47)

(48)

(49)
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[X], [Y] = O; [Z] are the geocentric coordinates of the local origin given by

[d], [L], [H] = O. The geocentric system is orie;ted so that its +X axis lies

in the meridian plane of the local origin. The X Y* Z* coordinates are

Cartesiam coordinates in the local system for the point given by @, k with H* . 0.

It should be noted that all the coefficients can be computed during the

phase of coordinate transformation omd consequently enter as constants into the

least squsres solution of the actual photogrammetrictriangulation computations.

(3) f+Ptiial control point, given by H:

Such a point is sitmted ‘“onan ellipsoid of revolution, the,axes of which

area* -(a+ H)andb*=(b+ H). In order to make the approximation values

XO YO ZO, as they may be obtained with (57), compatible with this condition, it

is suggested that first a new ZO value be computed with:

J ~-(g]’] XO +~a)p2,0. oh + xcq6 + ~ 71 -( b* (50)

The corresponding conditional equation is then

~Y+II#y+II~=O (51)

whereby:

\ =119 + X“ Q2 - z0q5

I% = +YO

IIIH = q +Zoql - Xoq
3 5

(5’)

smd

n3 = Lx] COs [d] + ($)2 [Z] sim [@]

~4=->
VI

1’)5 = sifl.[@]C06 [@] (($)2- 1}

(53)
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The q-values are constsmts and best computed during the preparatory coordinate

transformationc0mputati0n9.

(h) In the case that the slant distance (d) between two relative control

points i and j is given, we obtain the correspondingmetric conditional equation

with:

[
d = (xi - Xj)p + (Yi - Yj)2 + (Zi - Zj)q 1/2

and correspondingly:

(X:-Xj)&i+(Y;-Y:)AYi+(Z:-Z;)&i-(X:-X:)&j-(Y;-Yj)&j-(Z;-Z~)&j = A d (54)

where:
“ (X;-Xj)2 + (Y;-Yj)2 + (Z:-Z0)2- d2

Ad.
2

The metric conditional equations (48), (51) and (54) are linear equations in

terms of coordinate corrections and have the form of equations given with

formulas (43). Consequently, these conditional equations can be used by

s@lY ad~ng the specific equations to the normal equation system as given in

formulas (35), which in turn have to be restored to a quadratic form according

to the system presented with Tormulas (45). The resulting system is solved by

direct inversion, or solved by the formulation of a system of reduced normal

eqgations by partitioning as described in the previous paragraph. It iS

obvious that during the process of partitioning and forming the final normal

equation system, the minimum size of any one subdivision.in the computing

process is determined by the specific group of parameter corrections combined

by one or more conditional equations. In order to obtain a uniform approach

to the computing program, it is possible to consider all points of the model

as relative points, introducing the absolutely given control data as metric

conditional equations. Considering the given coordinates as approximate values,

the correspondingconditional equations with respect to the the three spatial co

ordinates are A X =0, AY =Oe,nd AZj=O.
J

These conditionalequations,
J

or any selection of them, are added to the corresponding B~ (AP’1AT )-1BXmatrix

during the process of forming the reduced normal equation system (37). By so

doing the coordinate values in-broducedare enforced. If desired, the corre-

spending V residuals can be csrried in the A -matrix as described before.
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.Ifon the other hand> the conditional equations are rather simple

expressions as e.g. in formulas (47), (48) and.(51), it is more practical

to use these equations to eliminate certain unknowns in the corresponding

observational equations. Thus, the coefficients in theBX matrix as given

with (41) have to be replaced by:

}

(L)x = DxIII@ -Ex(II\-<III@) - Fx
If for points of t~e 3 the unknowns

(L)y = DyIII@ -Ey(IIIk-<III@) - Fy
A X and A Y are eliminated

lH
and (J)x=Fx ~H ‘Dx , (K)x = Fx~% - E,

}

If for points of type 4 the

unknown AZ is eliminated

[J)y= Fy &%-Dy, (K)y = Fyl~H- Ey

In case the systematic errors present in the control data are rather large,

it may be desirable to adjust them in such a way that only a specific residual

V is obtained for any given control coordinate, independent of the number of

rays intersecting at such a point. Such a solution may be obtained by adding

to the normal equation system (21), corresponding conditional equations. In

general nomenclature, such a conditional equation is, with regard to formulas

(15), (16), (34) ad (40).,

V= p-l(S,kl+ bk2) ~
(55)

Thus it is possible to establish for each of the independent combinations of

the inter~ecting rays by pairs, a conditional equation between the two group

of associated kl and k2 values, by equalizing the corresponding expressions

(55) separately for each given control coordinate. In this way all normal

equations associated with a specific point will become interlocked in the

A P- IAT matrix and the process of stepwise accumulation of the reduced

normal equation system (32) or (37) will be rendered much more cumbersome.

Numerically speaking, in such cases it appears simpler, .md from the theo-

retical standpoint sufficiently rigorous, to accomplish the adjustment in

two separate steps. In the first step a least squares adjustment will be
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performed according to the presented solution,with the restriction however,

that only suck absolute given control data are introduced as are necessary for

a unique solution. The coordinates of the model thus obtained are then trans-

formed in a second computational step by three translations,three rotations

and a scaling factor In such a way that the sum of the squares of the residuAl

dist.smcesbetween the model emd all the given control coordinates becomes a

minimum. Obviously, with such a method, the photogremmetricallyobtained model

is being Interpolated into the configurations of the

(compare [3] =d [6] )

(b) Trend Conditional Equations

Quite simile-rto the treatment of a metric

given control coordinates.

conditional equation, it

is possible to introduce a certain trend condition known to exist between the

points to be triangulated,and which is mathematically expressed by a functional

relation existing between the coordinates of such points. In a general sense,

such coixlitionaleqofitionswill resemble metric conditional equatd.ons,except

that they will not necess~ily have any absolutely given p=ameters. Eepending

on the mathematical chart+cterof a specific trend, tie naer of po~ts involved
in such a trend condition will very. Correspondingly,the smallest possible

subdivision in the process of establishing the final normal equation system by

partitioning will be determined by the number of points combined by any oti or

several trend .Cond.ltinnal.equfLtions.

E. A Solution for Triangulat&igPoints not Included in the I-eastSquf!res
Treabnent for the Orientation PWutirS

~ B&spite the possibility of incorporate.%any number of relatim control

points in the general..meJ.yticeJsolution for a specific photpgramnetric

triangulation problem, it sometimes may be desirable to triangulate separately

additional points of the model. Consequently, for those points, ~ independent
.

coordinate deti’rminatl.onbeccmes necessexy. The positions of the correspon&g

rays are determined by the elements of orientation as obtained fmm an Inde-

pendent preceding least squares adjustment and the corresponding plate measure-

ments. It is obvious that these rays will not intersect due to unavoidable

mbaaoring errors. They must be made to intersect so that the sum of the squares

of the corrections to be applied.to the origi~ P~t-= ~asur~nts is a tin~~.



It appears advantageous to have an analytical solution which is affected as-

little as possible by the number.ofrays involved in a epecific tri~gulation

case, and which in addition uses formulas already in use in the computational

procedures previously described. Obviously, such a solution is,already available

with the observational equations (15) if only the coordinate corrections A X
J’

,AYj and A Zj are considered as unknowns. These observational equations lead

directly to the corresponding normal equation system fo~ed according to

formulas (35) by introducing(~P-lAT )-1 as P and BO as a null matrix. The

necessary coefficients of the observational equations denoted by Jx, Jy? Kx,

Ky and Lx and Ly are given in formulas (41).

This approach makes it necessary to compute, as a first step approximation,

values for the coordinates of the point under consideration. This may be done

efficiently with the use of the formulas (Il.),which may be written as!:

‘x +Cfz, +’px =0

Y+ctyz+p .0
Y ,.

(56)

where:
(x-xp)Al + (y-yp)A2 + CD ~

~=.
x Q

---
w

(x-xp)Bl + (y-yp)B2 + CE ~

aY=- ___
Q w.

“Px = - (CXxzo, Xo)

.@y = - (ayzo + Yo)
.

The corresponding normal equation system for SD n-ray solution is: ‘

x Y z

n o ‘[~xl + [~xl ‘.0

n +[ay] + [py]. o— (57)

+[cn] + [ap]=o

It should be pointed out that the roots obtained from,formula (57) must not

be considered as the result of a rigorous least squares solution because there .

is no indication how nearly this approach minimizes the sum of the squares of
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the corrections of the original plate measurements. Without doubt the answer

will provide an excellent appr,:ximationva~ue. As a matter of fact, such an

emswer may be considered as a&quate in itself~iif there is evidence of the

presence of systematic errors,;a ‘situationwhich renders an additional

treatment by a rigorous least squares solution superfluous.Furthermore, the

method presented with the formulas (~) and (57) is well suited for computing

in each iteration cycle of the least squares solution as described in Chapter

IV, the coordinates of the points of the model. (Compare remark Chapter IV (B),

page no. (28).

F. The Determination of the Mean Errors of an Observation of Unit Weight
of the Elements of the Orientation and of the TriangulationResults

The meem error of en observation of unit weight denoted by m is computed

with

~ _ (VTPV)1/2
r-u (m)

~ ~m VTP v , my be obtained directly from the reduction of the no-

equ$itionsor by adding the squares of the individual, weighted v and V values.

The letter r, c@otes the number of observational equations and u denotes the

number of unknown parameters. Thus the mean error of a specific observation 1

before adjustment is:

‘fi=+
(59)

The computation of m directly frnm the original’measurements, e.g, using the

differences of multiple observations,may lead to a veJ.ueof greater physical

significance. The discrepancies between the different values of m, computed

with &ifferent methods provide means to investigate the presence of systematic

errors.

The mean errors of {he unknown parameters in a least squares solution are

obtained by multiplying m with the corresponding weighting factors. The ,

inverse of “the’”matrixof the coefficients of the final normal equation system,

is the matrix of t@ weighting coeffici.ents. The diagonal elements are the

squares of the wei@ting factors associated with the correspondlng @own ,;

pf+rameters.
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If the normal equation system as given with formula (31) is directly

inverted, the ccunputationof the correspondingmean errors for both the orien-

tation elements sad the coordinates of the model does not cause my dlfficulty.

Correspondingly, the mean errors of the unknown pSxameters associated with the

reduced normal equation system In the method of partitioning (~, in form~

(28) or xl in formula (29), respectively) are directly obtained using the

diagonel terms of the inverse of the corresponding normal eqwttion matrix. To

prove this, we write the matrix of the ccefficients of the normal equation

system (35) with a notation correapondi.ngto formula (24) ss:

+

% %2

A;2 Az

The corresponding inverse matrix shell be denoted by:

+

Q,l Q12

Q:2 Q22

“(60)

(61)

According to the definition.of the process of inv&sion, with respect to the

notation u6ed in form~as (6o) ~d (6I) folJ-ows: :

(62)
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In accordance with the definition of the matrix product, it follows from (62):

(1) T=l
*II Qll + Aiz Q12

(2) All Q12+ A12cJ22= O

(63)

(3) A~2Qll + A22 Q~2 =0

(4) *f2Q12 + *22 Q22= I

With (63) we obtain:

Q12 =-A:! A12Q22

or
A;2 Q12 = - A~2 A; A12Q22

+ A22Q22 = + Az 922

A~2Q12 + A22Q22 = (63)4 = I = (A22-A~2Aj~ A12) ~22

or

(64)

)-’Q22= ( A22- A~2 A-;,A12

Formula (64) is identical with the corresponding ~pressiOn A*21 in formula

(28), which had to be proven.

In order to compute the mean errors of those parameter corrections,which

are eliminated during the process of forming reduced normal equations, ac-

cording to formulas (37) or (38), the matricesQ IIor Q~, reswcti~ekf, mwt~.
be obtained. It follows from formulas (63), equations (1) and (2), that

Q,l s A-i + A;; A12 Q22A;2 A;l’
(65)
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md correspondinglyfrom the equst$ons,(3) end (4)

Q22 ‘: A;; + A;2 A;2 Q,l A12 t$~

me ccmputatton of the ~trices Q,I Or Q22 cm not

acckunulatienand therefore a consideralle computing

On the other hand, the relati~e accuracies within a

(65)

‘(66)

be performed by atepwise

effort ,beccmesnecess~.

model are often of pro-

nounced interest. This fact underlines the advantages of a solution which is

established either directly on formula (32) or on the reduced normal equation

system (38), provided that the corresponding computations can be handled by

electronic computers. If it swffices to obtain only the mesm errors of the

eliminated peqwneter corrections, it is possible to compute the sq~es of.the

correspondingweighting coefficients as he diagonal.terms in (65) or (66) by

a ,stepwiseaccumulation in the same way as the reduced normal equation system
~

‘ was ptepwise qccfitiipted. ‘: .
..1

In case the elements of orientation can be assumed as flawless, the corre-

spon~g Q22 matrix becomes a null matrix and the A’;~ m?tr~ emerges as the

weight matrix .of‘thetritigulatedpoints; The more:excess observations.in-

‘,,corporate i@,o the original least squares solution for the orientation

.param@ers, the better this approxinmti!nsolutioR win be.

G. An Example of the Described Solution.Us,ingFuncti.on~ Schematics

Figure 5“shows the overlap of 3 photographs which may.be conhl?red as

being t~en either by Aerial .orground established cameras. The different

types of control points are marked by the following symbols:

absolute control,point, given by..X~ y, Z

pqr+,ial.,controlpoint,.giy.enby X and Y

pqrtial control P&nt, given,byZ

relative point
,.
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The heavily drawn contour line surr&nds the area over which a model exists.

+,/’
/

“ .,’

6i
/

i

Figure 5

,/-
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The following tabulation shows the situation interpreted in terms of the re-

cording of the various points (Nos. 1-9) by the verious camera stations (Nos.

I, II and III)

Point Type of”Point Camera Stations at which the point was recorded
Nos. I II III

1 A x -. x

2 0 x x

,,.
4“ o x x

5 0 x x

6 o’ x x x

-r A x x

8’ 63 x x

9 A x

Couutd.ngthe cross marks, we see that 19 Individual raya are present. Each

ray leading to 2 equations, we have, 19 x ‘2 = 38 observation equations for the

33 unknowa which (assumiw for ex~ple, the three elements of interior orien-

tation of each camera orientation as known) are composed of 3 x 6 = 18 elements

of orientation ead (9 x 3) -12 = 15 coordinates of’the model. ~As em inter-

esting by-product, it may be meritioned,that the evaluation of the chosen

problem,,although slightly overdetermihed,would not be possible With con-

ventional restitution equlxnent and technique~;”becauae there are only a

maximum of 4 intersectionsbetween corresponding rays of any one pair of photo-

graphs, as”can be seen from the above tabulation.

With the help of this tabulation we form the corresponding 38 observation,:,

al eqwatlo~ which me shown schematically in Fig. 6. h Fig. 6 each line

repreeent~ a observational equqtion formed according to formidas (1.8) with the

tame given in formulas (15), (40) ead (41). The individual A matrices and

slmllarly the corresponding ~ .Mtricee actwaJJ.yare a,sequence of completely

separated sub-matrices. .Au Inspection of Fig. 6 shows the fact, which hae.
already been mentioned, that in case there are no Vts, the A matrices become

a eequence of unit matrices.
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AX correcl?ons ofpoint coordnaies

No. 0/ Unkf?owff
o 34-710 13

$
I

AO corrections of orienfafion elempnfs ’ ~
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The actual character of a specific control point with respect to its

absolute, partial or relative value is of no concern in setting up the corre-

sponding observational equations. In case auy control coordinates are given,

it is only necesssry to eliminate the correspending parameter corrections in

the BX - matrix. Therefore, no coordinate corrections appear for the absolute

control points Nos. 1, 7 and 9, the partial controlpoint 3 appears only with

one, and the partial control point 8 with oaly two coordinate corrections.

The system of correspondingnormal equations formed

(31) is presented in Figure ,7.

V. A REFERENCE FOR AN AUXILIARY
COORDINATE TRANSFORMATION

according to formula

The subject of a specific coordinate transformation is not necessarily

connected with the subject of.this report. However, the application of photo-

grammetry, especially for geodetic puxposes, unavoidably confronts the user

with the problem of converting geodetic ellipsoidal coordinates (latitude #,

longitude k, and elevation H, as referred to an ellipsoid of revolution) into

a system of.arbitrarily oriented Cartesiam coordinate amd vice.versa.

A solution for this problem is given in L7] under the title “Some Remarks

on the Problem of Trmsformins Geodetic Ellipsoidal Coordinates into Cartesicm

Coordinates with the Help of the Reduced Iatitude”. obviously, such a solution

include6 the establishment of a geocentric Cartesiam system, which is but a

special case of the general coordinate transformationproblem.

VI. DETERMINATION OF RADIAL DISTORTION

Distortion A is positive if the image point is displaced away from the

principal point.

+x

L
\“’

\ \.
\

c \ \
+A’\ ~

Ac r
+A

II

r’ R’

Figure 8 kg Figure 9



From Fig. 8:

[ 1
l/2

d = (Xr - XP)2 + (Yr . ~pj2

Assuming that the distortion A can be expressed bv

(67)

A = Kod + K1d3 + K2d5 + K3d7 + ..... (68)

and

Ax=: (x. xP)=
r

4f=$(Yr-Yp)=

to the character of

(Ko+I$d2+K2d4 36 .O..g)(xr-x )+K d.+
P

(Ko + %d2 + %d4 + :3d6+ ““”””)(yr - Yp)

(69)

Due

as the ‘radial.distance with or without distortion.

lens distortion, it is immaterial if d is interpreted

From Fig. 9:

A-At d—. -
AC c

(70)

or

A?=A-$d

Substituting formula (68 ) in (70)

A! = K*d + Kld3 + K2d5 + K3d7 +
0 ..... (71)

whereby

K;= KO-+
c

K~ iS zero if the condition is introduced t~t
0

Ko=+
(72)
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Therefore, asaumlng that in the orientation calibration the principal distance

c is considered as unknown, that is to say that the solution is not deprived

.ofthe possibility of computing a Ac-correction in each iteration, we may

present the remaining distortion by:

A’=~d3 +~d5 +K3d7 + .;.:

and correspondinglywith formulas (69) and (73) and Fig. 8:

~ ‘,,Xr”+ ,(~d2 + ~d4 + K3d6 + ...)(Xr - Xp)

YR . Yr + (~d2 + ~d4 + K3d6 + ...)(Yr - Yp)

..{

~’=lx+v
x

Frti fO17mii&S(12) and with
yR. hy+vy

and forwlas (74)‘the observation equations qre:

Ix+vx=p ‘(1 + ~d2 + ~dh + K#’! +

,,
Ey+yy=~(l+K1d2+ I@+ K3d6 +

where

~ = ~ ~m2 * ‘n2)l/2

q

. ...)+ Xp = FL

...)+Yp =F2

(73)

(74)

(75)

(76)

~ = (X)Al t (Y)B1 + (Z)cl

n = (~)A2.:.+((.~.)B2.+ (z)C2

Considering Kl, ~ ~d K3 as a sufficient number of ‘distortionpSr~eterS

we obtain .?rom’the Taylor expamsion for the right-hand side of the above

,equationticcordingto formd.ae.(1~), n+glectipg term of.second md .h+gherorder}

. &F “’:.
lAa t ...’. +

~F1:. .,,,.aFL, &F1
Vx.+axvx +... =x ,. q ml +.q “%2,+

“q”~-ux -

‘,,(77)
bF2 bF2 3F2, aF2

vy+bx’? ~+... == A& +.... +
qf%+q ~2+qAK3-~y

,,,
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Because the @nOwns KIJ ~ I ~d. K3 == l~n- in the Observational’
equations (76), their approximations in each iteration may be taken equal to

zero; consequently the coefficients of the remaining unknown orientation

parameters ‘remainthe same as given by formula (kl).

The incorporation of the distortion determination requires merely the .

addition of the’partial differentials wit@ respect to the unknowns K
-, ~> ~ ad

K5 to the s,ys~m of observational equations.

I They qre, for the x-equation:
.:

.

‘3
:Ox=d6. ~=d6 . (4: - x“)

and for.the y-equation: ‘(78)

for
% : My =“,d2 . ~ = d2 (2; - ~)

,

K.#=d4. ~=~4(E~-Yj)

,,

‘3
:Oy=d6. ~= d6 (~j - yj)

where ,,,

d2 = (~; - Xj)2 + (Z~,- yj)2 = C: + C: = Cxy (for the meami.g of Cy and Cx

gee fOrmul.as(40) ~d (41))

Consequently we obtain:

I’%”cy -MY=C .Cx
XY

NX=C2 . C
XY Y

-Ny = C2 Cx
XY . “(79)

0= C3. Cx. Xy y
-OY=C3 c“

XY .“ x
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The least squares solution gives, besides the orientation unknowns, the

distortion’coefficients Kl, K2 and ~. The distortion At can now be computed

with fOrllltii‘(73). However, usually the distortion curve is presented in such

a way that A = O, for a suitably chosen ~. Thus analogous to fopmd.a (71), the

condition that

KY = -(Kl~3 + K#5 + K$7)

must be satisfied.

From (73) the right side of formula (8o) equals -At
a

K: = - ~ = -(K1$2 + I@ + K3# )

and the final distortion curve is now

A = K~d + K1d3 + l$d5 + K3d7

or.
[

A=d K~+K1d2’+$d4 j
6-

+Kd

The “focal length” associated with this distortion curve

to (71),
+
c = c(1.- Ku)

Accmacy Considerations:

(80)

(8I.)

(82)

is again, in anslogous

(83)

The mean error of an observation of unit weight denoted’by m is computed

according to (58)

m=(-+hw’ (84)

where r is the number of observation equations

u is the number of unknown geometrical parameters snd

Kis tie numberof unknowndistortion parameters csrried in the ‘iolutiori.

As described in Chapter IV E. the inverse of the normal equation matrix

is the weight matrix of the unknown parameters of the solution and consequently

the mefm errors of the distortion parameters can be computed directly.
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The mean errors of a computed distortion A for an arbitrarily chosen d

remains to be computed.

Substituting (81) into (82) we

[
A = d K1(d2 .

which may be written as

d
—~.~

.A
QA

obtain

$.2)+ I$(d4 - 84) + K3(d6

-.

denoting

we may write (85) as

t.

(85)

J

(86)

.. ..

‘1

‘2

.1

whereby

‘3

T

‘A=’” [fQKf]

fl = d(d2 - ~)

f2 = d(d4 - ~4)

where QK iB the sub-matrix of the”inverse of the original norm&l equ@ion

eystem associated with the unknown distortion parameters Kl, K2 and K .
3

VII. CONSIDERATION OF REFRACTION
,,

Similar to distortion, refraction causes the tangent to the actual lighi.

ray, at the center of projection, to deviate from a line expressing the con-

dition of co-linearity between object point, center of projection and image

point.

In order to compensate for refraction, it is necessary to Incorporate a

corresponding correction in the camputation of the X“ and”y“ values in formulas

(12) and (15), respectively. Figure 10 shows the ‘basicsituation, assuming
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,,

that the ‘localCartesian system is oriented in such a way that the (X) (Y)

pme is normeJ.to tie plumb line direction‘at the center Of projection and

further assumimi!that refraction acts oflY on tie e~vation ~x”

o~ngen’ ‘0 ‘i@t Cwe

.mrve of light ray

(XYz)

(z)A

T+(x)
+(Y

‘\
\

Figure 10
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We obtain’from Fi~..(lO):

(m)Ctn z =
(z)

w
m “’

A denotes the correction to the zenith angle due to refraction.

A’= F(XO Y. Zo, 6,:z, M ) (89)

M ~e meteorologicti’~~ters and
/

:/1 ~ =/. [(x)2 +(Y)2+(z)q 1/2
Consequently, we obtain: ‘.i.

.,

“ (z)A= [(X)2+ (Y)2] 1i2:tn (z-A) (90)

The computation of X“ and y“ with formulas (12) is now carried out, using for

each individual ray, the corresponding (X), (Y), and (Z)A coordinates. As the

(X)(Y)(Z) values converge during the iteration cycles to the final answer, so

will the c,onespondingA correctionconverge to the correct refraction value.

Fig, 11 shows the(general character of the refraction values .isthey muet

be expectedly an observer”on the ground (dotted lines) and & the air (solid.

lines),
..

Refraction in seconds of arc is presented in its fuuction.alrelation.to

the eleyation or depression angle of the line of sight and to thq height above

the reference ellipsoid of tsxget point or observer, respectively.
(‘ )
\.Thetables No, 1 end No. 2 show the s-e information in somewhet more

detail, The columns headed by 41° show the changes of refraction.for1° change
‘.,’,“
of a specific elevation or depression angle, respectively,

It appears practical to assume that for aeri~ precision measurements the

2@Inm - 600 lsns cone under 200 tilt presents the most stringent requirements

with regqd to refraction. Therefore 35° for a,minimum depression ‘&le appears
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to be a practical limit. Table No. 2 shows that for an aerisl observer both

the absolute smouut of refraction and its differential change have their maxim~

values for a flying height of about 18 km. For a depression angle.of .3>0 the

corresponding values are 27” and 1“, respectively. Based on prsctical .experi.

ence.with metric aerial photography, one should be satisfied with a compu-

tationd accuracy of +1” for the refraction correction. Consequently, the

corresponding depression angles for the individual rays can be computed by

simple formulas depending on a local Cartesian coordinate’system, provided that

its origin is within ~l” _. z +100 km from the cemera position. This appr~ch

will do justice to strips of 200 km length or blocks with sides of about 1~0 km.

At the same time it is desirable to minimize the computational difficulties

connected with the introduction of certain metric conditions associated with

partial control points. A corresponding orientation of the local Cartesian

system has been described in Chapter IV - (~), page 35.

Formulas describing refraction corrections have been derived by several

authors. h [81 a treatment is given for astronomical refraction includiug

zenith distances > 90°. In [9] expressions for target points inside the

atmosphere have been derived. References with respect to corresponding basic

assumptions and formulas may bs found in the recently published report> ‘[10] . .

A S~ y of the problem of refraction in photogrammetry is fomui in Cld . ~~ ,

M, the meteorological constants referred to in formula (89) are either

obtained in accordance with some model .ofthe atmosphere or sre determined

directly from independent meteorological measurements, or obtained indirectly

by additio~elevation angle measurements with respect to known points; a

procedure’which under certain conditions csm be made a part of the actual

photogrmmnetric triangulation measurements. If aerial analytical triangulation

demands specific meteorological parameters in the .aea of the flight~ it is

feasible to eject periodically from the airplane probes for measuring densities

and/or temperatures; the corresponding results being recorded by radio link in

the airplene.
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In accordance with the conventional approach we derive from Fig. (15) ~

and Snell1s law:

sin (z): np
n = index of refraction— .— *

sin ~
‘P

and from the sine law:

*
sin (z)

‘P where rp . R + H.— (Fig..12)
P

sin ~
‘P

with (91) and (92) it follows that:

**

‘P ‘P
sin (z); = npr,psin (z) = K

P

in particular for point A, K . nara sin (z)a where ra = R + Ha

Further from Figure (13), omitting subscripts,

r
‘P

$.*
dC = K dr

)
‘hm)2-K~l/2’ mdicP=Kr a

Applying formula (94) to points (Q) outside of the effective

n . unity, we obtain with r =R+H
~ q

(91)

(92)

‘, .

~ (93)

~ b ‘“)
atmosphere, where

and, correspondingly, from Fig. (12) for all points for which rq > rb

Cq = (Z)a +~m - sin-l ~

‘q

(95)

(96)
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From (96) it follows that, for target points situated outside the effective

atmosphere, refraction can be expressed in terms of astronomical refraction

denoted byAm. According to [8] we have

Aa = ~ tsnz*’+a2 ~m3 .* + ~ tm5 ~’ + ~4 ~m7 .’
3

+.. ,

with ctn 2z* =

r

2’73
Va ctn (z)a and.for air Va = 8.1578

~

(97)

The coefficientsal...a4 depend uPOn the stricture of the atmosphere, As

[1
outlined in 11 for precision work it will be necessary to compute nA with the

Cauchy equation as function of the effective wave length and obtain an ind~ of

refraction profile from Rawinsonde observations. It is then possible with

formula (94) to determine for various (z) values the corresponding$-values by,

numerical integration. The correspondingA ~ values, computed from the re-

lation C~ = (z) + Am (Fig. 12) are now used to compute the specific a-

coefficienteby fitting the expansion as given by (97) to the computed A ~

values.

In order to apply formulas (94) or (96) to the case of an aerial observer,

It is necessary to establish the relation between (z)p and (z)a which is

obtained from (93).

npr sin (z)p
sin (Z)a = * =

nara
(98)

aa .,,

The true zenith distsaces Za and z
“(
are computed, according to Fig. 12 from

P

sin C
tanza=~

r
Cos t-:

Pp

and

,, -sin C
“\ tnnz =

P
LCos t-r

Pa

(99)

(loo)
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From,Fig. 12 we see that for all points outside the effective atmosphere,

the refraction as encountered by .smobserver on the ground and in the air for

a specific ray add up to astronomical refraction.

This fact is illustrated in Fig. 11 where, as example, for an elevation

and depression angle of 30°j the sums of the ordinates of the solid and dotted

lines have been plotted for altitudes outside of the effective atmosphere. The

reSLiLtingline, designated “astronomicalrefraction for 300ct,a~ees ~th the

correspondingvalue of 99” in Table No. 1 for e = 30°and H’=@. ,
5

For .Preci~\ontrian~ation of points within the atmosphere, eSPec”iS1.lYif I

large distances between observer and target are’encountered as in guided missile ~’
,,>

applications ~ the n~eric~l integration bY rorrn~~ (94) based on ~ index of

refraction profile will be unavoidab~e.
.“

For many cases, however, especially in

aerial photogre.imnetry,an expression for the refraction ctm be used whicliavoids ,

the cumbersome numerical integration.
‘/

Assuqing a constant atm&pheric temperature gradient; refraction ex-

pressions were derived in [“9]for both an observer on the ground and in the air.

However, these formulas are restricted to a situation where one of the end

points of the light curve$is situated at the height of the ellipsoid of refer-

ence. ‘Moreover~ the expressions obtained in [ 9] are.umnecessaiily complicated
,.

for’numerical evaluation.. In the following a derivation is given which, follow-

ing the general approach of [9] ,.overcomes the “abovementioned restriction and

results in expressi~gs more suited for numerical evaluation.’,
\

From the well khown press~e altitude relationship it follows that for a

linear decrease of temperature with altitudi,

L . (*)e “;.1

P. o
‘here a-’=’- FL ‘d T = ‘O + F

(101)

,,
‘- R is the gas cons~ant ~or air, T absolute temperature

-and L=-% the temperature‘@a&Lent.

8ilSih@ly lfdl-knolfn is the density - altitude . pressure relationship.
... ,,

,.L . L 3. (+) ’-1
P. POT

(102) ‘
~.
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Finally we introduce the well known relationshipbetween the indexes of

refraction and density (compare e,g. [lg ). r12- 1 . cp, where c is a constant,.,

With n.= 1 + a; whe~e a is usually ~ 0.0003, we mey write:

(103)

A

I ..— — ~ Ho (To)

Figure lb

I , (104)

;.



From Fig. 14 : x = (h +Ah) tan (z)a (105)

aad A~ = ‘h ‘:* “)a s ‘h ‘in ‘z): ‘Os “)a (lo6j,

In [13] an expression for x is published,’which may be written ae:

tan (Z)a H
pna-n

X =hta(z)a +’—
jCOS2 (Z)a ~ ‘p

dH

a

(107) .

For optical frequencies nn is usually < 1.0003 but Z 1 and we may therefore
.

write for (107)

tan (z) Hp
aX =htm(z)a+ —

Cosp(z)a I
Ha

By comparing (lo5 ) with’(108) it follows from

tan (Z)a Hp
Aa ...,~

J
(na - np) dH

Ha

(na - np)dH (108)

(106) : ,,.,

.7

(109)

Due to the,linear relationship between temperature and height, (101), we may

irrite, with the notation In Figure 14 and formula (l@), :

‘! ‘ tan (Z)a T’p
Aa = ~ j( na - np) dT (ILO)

,,,
Ta

(

From (103):
T

n~ = 1 + ao(~) a-l
0
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Substituting (111) into (110) we have:

tan (z)
a-1

Aa.~&

To

tan (Z)a a. T:-1
Aa=~ —

a-1
To

r-

t

M 11 - (1 + ;)a-l dt
a

o

A~=& tan (Z)a
To

~-l-]

or

da = A tan (Z)a

[T’-1-:T21

where

do
A=— P!

.T~-l

1~=-—
FL

From Figure .12 or 14 we have:

7 =Aa +A
P

Ta=To+IJIa

TP=TO+LS
P

(112)

(113)

(114)

(115)

:..,

‘,

(116)

where T is angular refraction, and A is the refraction of an aerial observer.
P

From 93 follows:

n
a

r sin (z)
.P a

~ ra sin (z
)P

with (116), setting 2 - 1, aod with T being a small angle,
r
a

we may write (117) as:

n
a
= 1 + T Ctn (Z)a

ii-
P

(117)

(118)
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Neglecting again n in tliedenomi~tor, we have:
P

(na - np) = T da (z)
a

or with (111),

(20
~= ~ tam (z)a (T:-l - T;-l)

To-

(U9)

(120)

and with the notation of formula (115),

T“ = A tan (Z)a (T~-l - T~-l) (121)

The refraction for an aerial observer follows, from (116):

A; = A tan (Z)

a [--T’-’].‘ (122)

As mentioned on page @, T becomes astronomical refraction (Am) for all points

outside the effective atmosphere for which T = O. Consequently (121) reduces
P

for Tp = O to:

A’”= A t.m (Z)a T~-l. (123)

Introducing (123).into (115) we obtain:

T: - Ta
A:. A& - A tan (Z) P

a a(Ta-Tp)

[

A;=A& 1-
T: - T;

aT~-l(Ta-Tp).1
whereby for precision work A’; can be

Refraction can now be taken into

(z - A ) as required in fortia (9o).

(124)

(125)

computed from (97).

consideration by computing either A or



,, I Location of observer or target point respectively.

Type of application Outside effective atmosphere

Aerial Photogrammetry Formulas (100), (96)

(97) @ (93)

Inside effective atmosphere

Formula (122)

Formula (115) or (124)

and (9’7)or (99) & (94)

in order of increasing

precision

Attention must be given to the fact that the computation of z for a specific

ray is carried out with the coordinates of the center of projection smd of a

specific control point. Thus z, amd not (z), is being obtained (Fig. 12). In

extreme cases of precision terrestrial photogranunetry,it may therefore become

necessary to compute a series of refraction corrections accOrdiu tO the fo~Ow:

ing steps:

l.Al=fz

2. (z)l=z -A$

3. A = f(z)’ etc.

The computations are continued until the specificA -value stabilizes.

Frovided (z)a + (z)p is sufficiently close to 1800 (flat earth geometry),

formulas (115) and (122) can be combined in an expression valid for both a

ground based or airborne camera. Introducing the notation of this report, the

center of projection by O and the target point by R, we obtain:

~“ = A tan (Z).

[“-’-%1

(126)
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VIII. THE TRI?ATMENTOF STRIP AND BLOCK TRIANGULATION

It has been shown that the matrix of normal equations (35), illustrated in

Fig. 15, expresses the general photogrammetric problem. The contents of that

matrix include the solution for the trismgwlation.ofan unlimited block and

obviously, as a special case, the triangulation of sm unlimited strip.

Such matrices resemble each other in the geometric arrangement because

successive groups of ground points are being photographed from a certain number

of successive camera stations. This fact is reflected in the arrangement of ‘:

the coefficients in the e: (,AP”lAT)”’EO matrix sad its transpose. These

matrices are only partially filled, forming em escalator pattern as shown in

Fig. 15.

The example is a strip with 2/3 overlap, where it is assumed that six’

points are located in each trilap-area on the ‘ground(I, 11......N). The

corresponding reduced normal equation system (37) Itself becomes a symmetrical

escalator ~trix~ grOuPed alOng the ~in diagOnal as shown in Fig. 16.

Fig:,17 shows a reduced normel equation matrix for the determination of

the corresponding AX vectors of a block of 7 x 7 photographs flown With 2/3

longitudinal sad 2/3 lateral overlap. In this way, each portion of the ground

IS being recorded on nine photographs. In the exsmple it was aesumed that one

point ie located in each one of the nine times covered ground sections. The

matrix as shown In Fig. 17 is typical in its arrangement for any block tri-

angulation.

The.size of the cross shaped openings which are filled with zeros obvi-

o~ly Increasea with an increase in the length of the sides of the”block under

consideration.

If one uses the aforementioned sthematic of the general solution, present

day electronic computers allow, without undue difficulties, the formation of

the reduced nornpl equation systems as presented in Figs. 16 end 17, However,

the problem remqins to invert these normal equation systems. Generally :

speeking, both strip and block triangulation will result in normal equation

aysteme with too many unknowns for direct inversion.
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TWO possibilities for the solution of this problem shall be discussed.

The first solution is rigorous. Its result is influenced only by the

propagation of the rounding errors in the computing machine.

The solution depends on the repeated application of formulas (22) - ‘(~),

th& eliminating, stepwise, certain groups of tmknowns. The system of p&

titioning as displayed in Fig. 16, is based on the stepwise elimination of

groups containing twelve unknowns. This arrsmgement was chosen in order to

minimize the’number of zeros in the individual submatrices, denoted by Bi18,

thus increasing the economy of the necessary computations. Denoting the

s-times reduced system of normal equations in accordance with the well known

notation used by Gaues, as .s,

W’ O~taiG: Ao~ = [A@-l)]-’[&(s-l)]

$o~-~ [As-I .(s-2)]-’ [& ‘(S-2) - Bs-l AOS]

.,
1,

●

(1.q’)

where

A~”l= Az - B: A;’ B, and }2.1 =~2-B\ A;’$

A3.2 = A3-” B~(A2.1)-’B2 #3.2 =13- Bj(A2-1)-’f2.1

.

●

●

As”(s-1) ‘AS- B~_l [A~-1-(s-2)]-’B~.l .&b-l) =)s- q-, [A&l”(s-2)J’&14s”2)
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The other solution uses a technique related to the Ge.uea-Seidelrelaxation

method. A submatrix chosen for geometrical reasons,aoves in steps across the

original matrix. Once more the escalator matrix of Fig, 16 is seen in Fig. 18

as the shaded area within the heavy contour lines. In a strip flown with 2/5

overlap, five consecutive camera statione are connected by the resulting overlap

of the photographs. Therefore, having six unknowns per station, a 30 x 30

submatrix was chosen, which always contains such a group of unknown orientation

pa&meters} as they.belong to five consecutive camera stations. TIIiSpartiti

system is now displaced e.longthe strip by,one station each time. Thus} for a

strip with n photographs one obtains (n-h) such submatrices and consequently
,.,.

by.inversion of these submatrices one obtains five values for each of the

orientation parameters with the exception of the first and last four photographs>

where accordingly fewer values are obtained. l’hearithmd.iC means of the roots

of the individual parameters are now computed and considered as the result of

~.one iteration cycle. me approximation results thus obtained are ueedto

contin& the computation according to the Gauss-Seidel rel=ation method,’by

changing the original absolute column, taking into account the coefficients not

incorporated in the individual 30 x 30 submatrices, together with the values of

the correspondingorientation parameters, as obtained in the preceding iteration

cycle. The iteration is continued until the roots,have converged to a pre-
.,

established accuracy level. For the econo~ of the solution, it is of importance

that only in the first iteration cycle the individual submatrices must be in-

verted.. The roots in the following cycl~s are then determined by multiplying ;.

the individual inverses by the changed absolute columns.

Ix. SUNMARY AND CONCLUSIONS
~

The analytical solution for the general.problem of photogr-try, as

presented in this report, is not restricted by geometrical or statistical

considerations,because all nine geometrical parameters which characterize a

central perspective cm be introduced for w number of photographs. (Compare

[16]). h.rthermore, provisions have been made to consider all types of measure-

ments, as they may arise, as erroneous. A least squares treatment resulte in

the most probable values of the.unknotis of the solution, provided that the

residua Lerrorsare normally distributed and the various bundles of,rays are

generated according to the principle of the central perspective.
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Physicsl influences, which deform the central perspective bundles and

therefore devaluate the condition of’collinearity (compare Chapter III), are

lene distortion ed refraction. The lens distortion csm be determined along

with the geometrical parameters ,(See Chapter VI). Star or ,COllimatOrpho-

tograpby~ in connection with the analytical treatment of an individual photo-

graph, provides a practically unbiased means of determining the calibration

of such a camera; that is, its interior orientation end the specific lens

distortion. The simultaneously obtained elements of exterior orientation allow

the calibration of phototheodolites or the establishment of the mutual.relation

between several c~ras as, e.g., is necessary in connection with the use of +’

sun camera. (See Chapter IV-C)

Based on practical.experience, it can be generally stated that,the analyti-

cal treatment appears to be em excellent means for analyzing objectively the

‘componentsof the photogrsmmetric measuring method.

If refraction can not be eliminatedby a suitable arrangement of the

measuring set-up, its influence must be eliminated for each individual ray,

making use of specific’meteorologicalmeasurements or assuming a certain model

.ofthe atmosphere. Information concerning the computation of the corresponding

corrections and their consideration in the analytical reduction method is given

in Chapter VII.

Ignoring the econo~cal side of the problem, in precision photogremmetry

the requirements for flatness and dimensional stability of.the emulsion carrier

can be satisfied.by the use of precision grouud glase plates. The unavoidable

irregular shrinkage of the emulsion, together with the measuring errors on the

comparator cause the plate coordinate measurements to be affected by residual

errors, which have a distribution similar to a normal distribution, thus juctl-

fying the effort of a rigorous least squares treatm~nt. Such a computing

technique will aleo prove to be practical in cases where systematic errors are

present. Hot only does a least squares solution in any case produce the most

likely result, but additionally obtained qualitative and qy.antitativeinfor-

mation e.llowsone to recognize and isolate systematic errors. In addition,

the least equarea treatment, as described in this report, ia simple> due to
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the simplicity of the mathematical tidel on which the general photogrammetric

solution is based. Thus, the least squares solution, can be considered an

economical technique for intersecting correspondingrays of various bundles.

A comparison of’thi. report with[2] , shows that the present approach

distinguishes itself from the former one only by the way in which the elimi-

nation of the unknown coordinates of thfkmodel X is accomplished. In the

present solution, this elimination of unknown. is not perform&d algebraically

before the observation equations are formed but during the process of forming
,.
the reduced normal equations. Consequently, the system of reduced nornml

equations (formula (37)) agrees, to all but 6eCOnd order terms, which have been.

neglected during the process of linearizationby the Taylor series, tith the

corresponding normal equation system of the formerly published solution. “The

advantage of the present solution can be seen in the simple snd systematic flow

Of the computations. It is possib~to treat all cases of practical analytical

photogrammetry with but one basic computing scheme, thus simplifying consider.

ably the “bookkeeping effort!!in the electronic computer.

A critical study of the indivual steps of the presented solution leads

to a conclusion which, although somewhat discouraging for the author, maY’en-

courage the application of analytical photogrsmmetry. It becomes obvious that

the analytical treatment of photogrsmmetricproblems does not call fob any new

manipulations in photogmmmetric theory or statistical treatment of errors.

The expression., representing the basis.of the whole solution, derived in

equations (11) and (lZ?),as they exist between the coordinates of the model and

the correspmding coordinates of the images, are the well-known formulas d6rived
I

by v. Gruber in [14] and the corresponding inverse functions. The ps$tial differ.;

ential quotients necessary to form the observation”equatlons(15), given with

formulas (40) and (41) are the’seme expressions that are found ln[l~ or [2] ;

the unmodified u8e of these expressions appears justified due to the simplicity I

of their construction. The ‘systemof normal equations (21) resulting from the ~ ?

system of observational equations (18) is identical> as mentioned before, with

the solutiorigiven by Helment in [4]”. The elimination of the vectors, K in .

the system of norwl equstions (21),Ax in the system’(55), and the reduction’
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of the normal equation system,for an unlimited strip as shown In Fig. (16),

(formula (1.27)),are performed with a certain sequence of matrix operations,,

kormvlas (22) to (30).. This technique however, is as shown by Gotthardt in

[15]noneother than the classic Gaussion elimi&tion for two unknowns,

applied to matrix calculus. The alternate solution for solving the system

of normal equations of a strip or block triangulation using S. iterative

approach, is based.o. the Gauss-SeidelRehation method[17],in connection

with a procedure which has proven useful in similar applications, known as

“Smoothing with Moving Arcs.”

Consequently, the lmowledge of the classical.geometrical considerations

dealing with a.central projection, and a certain familiarity with the method

of least squsres adjustment, as applied in geodesy, suffice to solve the ana-

lytical problems,arising from the application of photogrammetricmeasuring

systems.

.As previously mentioned, the system of normal e~uations (35) schematically

shown in Fig. 4, is typical for the most general problem of analytical photo-

grsasuetry. The system is resdily accumulated because the correspmding obser-

,vational equations are based on theosimplest geometrical model conceivable,

e~ressing for any type of control Nint the condition.of collinearitybetween

control @.nt, center of projection and image point. The problem of arriving

at the nmst economical end feasible method of reduction in analytical photo-

grsmmetry is, therefore, concerned with the process of determining the roots

of this normsl equstion system. The solution presented in this report is

based”on the formation of a system of reduced normal equations (formulas (37)

or (38)) by a rigorous mathematical method. The attractivenessof the solution

srises from the presence of a series of separated square matrices along the

main diagonal.. This feature, however, is lost in the resulting system of

reduced normal equations, where, qtite obviously, sll the remaining unknowns

are more or less correlated, depending on the geometrical arrangement of the

cameras. Any attempt to further simplify the process of determining the roots

of the normal equation system (35) as it is readily seen from Fig. 4, must try

to preserve all of the fully separated square matrices along the main diagonal

during a complete computational cycle. Such a result is obtained if a corjlpu-

tational cycle, using the relaxation technique, is established around the point
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which separates the unknown paremeter correctionsassociated with the model

‘x
from those associated with the camera orientations AO. ,Assuming,

Aas a first step, <O a ndl vector, one obtains a AX vector by a series

of inversions of 3x3 matrices, each of which contains the coordinate cor-

rections of a single.controlpoint. Mdtiplying this AX vector with the

subm@~~{ $JAP-hT)-’Bx , end adding this result to the absolute column,,

B&AP A~4 , a A. vector can be computed by inversions of a series of

maximum (9x9) matrices, each of which contains the corrections to the orien-

tation elements of a single camera. l!hi:new A. vector is multiplied with

the submatrix, B~(Al?-’AT)-’BO, and added to the absolute colump, B~(Ap-lAT)-l~

and a new A-x ‘vectoris computed using the aforementionedcomputational steps,

which in turn lead to the computation of a new A. vector. Thismethod will

converge although very reluctantly. A geometrical analogae of such a solution,

although not entirely descriptive, leads to the following approach. Starting

with certain approximations for the orientation parameters, sets of coordinates

of all points of the model are computed with formulas (56) and (57)j which may

be subjected to an after-treatmentaccording to formula (39) with A. as null

vector.’ In any case, the maximum size of the matrix which must be inverted is

(3x3). With the thus Obtained sPatid cOOrdl~tes of all points of the model,

a &eriea of resections in space is computed, thus obtaining the orientations

of all cameras. In these computations,matrices of (9x9) maximum size must be

inverted.’With the thus computed orientationparameters, a new set of coordi- .

nates of the model are computed, on which a n,ewset of camera orientations can

be haeed, By repeating these two phases, alternately, the final orientations

and correspondingly,the final coordinates of all measured points of the model

cem be computed. Again,”the convergence is extremely slow. An increase in

the slope of convergencewould remedy this situation, The associated numerical’

effort ~y be considerable, Such methods are’described in~17]. On the other

hand the development of eleot:onic computers progresses at an impressive rate,

with respect to both storage facilities and oomputlng epeeds. In the near

future, it should be possible to handle, economically,numerical solutions

requiring a very large number of iteration cycles, It is believed that thi6 ...

“situationwill make possl,blea solution ba8ed on relaxation techniques for the
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general photogrammetric problem. This remark is made especially with respect

to the analytical treatment of an extended block, where the approach as outlined

in this report still leads to a rather bulky matrix of normal equations, as

shown in Fig. 17.

Concluding, it appears that the problem of analytical photogrenunetrytoday

requires concentrationnot so much on the problem of the ntamyical treatment of

the measured plate coordinates,but more on the teclmical difficulties associ-

ated with problems of identifying smd measuring precisely the contents of

photographs.
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